DNA methylation in schizophrenia in different patient-derived cell types

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Vitale, Alejandra M
Matigian, Nicholas A
Cristino, Alexandre S
Nones, Katia
Ravishankar, Sugandha
Bellette, Bernadette
Fan, Yongjun
Wood, Stephen A
Wolvetang, Ernst
Mackay-Sim, Alan
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
Abstract

DNA methylation of gene promoter regions represses transcription and is a mechanism via which environmental risk factors could affect cells during development in individuals at risk for schizophrenia. We investigated DNA methylation in patient-derived cells that might shed light on early development in schizophrenia. Induced pluripotent stem cells may reflect a “ground state” upon which developmental and environmental influences would be minimal. Olfactory neurosphere-derived cells are an adult-derived neuro-ectodermal stem cell modified by developmental and environmental influences. Fibroblasts provide a non-neural control for life-long developmental and environmental influences. Genome-wide profiling of DNA methylation and gene expression was done in these three cell types from the same individuals. All cell types had distinct, statistically significant schizophrenia-associated differences in DNA methylation and linked gene expression, with Gene Ontology analysis showing that the differentially affected genes clustered in networks associated with cell growth, proliferation, and movement, functions known to be affected in schizophrenia patient-derived cells. Only five gene loci were differentially methylated in all three cell types. Understanding the role of epigenetics in cell function in the brain in schizophrenia is likely to be complicated by similar cell type differences in intrinsic and environmentally induced epigenetic regulation.

Journal Title

N P J Schizophrenia

Conference Title
Book Title
Edition
Volume

3

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2017. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Item Access Status
Note
Access the data
Related item(s)
Subject

Biochemistry and cell biology not elsewhere classified

Clinical sciences

Biological psychology

Clinical and health psychology

Persistent link to this record
Citation
Collections