An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models
File version
Author(s)
Abbassi, Abdelkader
Heidari, Ali Asghar
Mirjalili, Seyedali
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Solar Photovoltaic systems (SPVSs) are becoming one of the most popular renewable energy technology for generating significant share of electric power. With the consistent growth of SPVSs applications, the challenge of parameters estimation of photovoltaic cells has drawn the attention of researchers and industrialists and gained immense momentum for SPVSs modeling. This paper proposes an efficient approach based on Salp Swarm Algorithm (SSA) for extracting the parameters of the electrical equivalent circuit of PV cell based double-diode model. The experimental and comparative results demonstrate that SSA is highly competitive with the results of two algorithms that have never been used before for the PV cell parameter extraction namely Sine Cosine Algorithm (SCA) and Virus Colony Search Algorithm (VCS). SSA is also significantly better than three well-established parameter extraction algorithms namely Ant Lion Optimizer (ALO), Gravitational Search Algorithm (GSA) and Whale Optimization Algorithm (WOA). Several evaluation criteria including Mean Square Error (MSE), Absolute Error (AE) and statistical criterion show that the SSA algorithm provides the highest value of accuracy and has merits in designing SPVSs.
Journal Title
Energy Conversion and Management
Conference Title
Book Title
Edition
Volume
179
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Mechanical engineering
Chemical engineering
Electrical engineering