A linear dynamic model for a saturated porous medium
File version
Author(s)
Hanyga, Andrzej
Jeng, Dong-sheng
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
A linear isothermal dynamic model for a porous medium saturated by a Newtonian fluid is developed in the paper. In contrast to the mixture theory, the assumption of phase separation is avoided by introducing a single constitutive energy function for the porous medium. An important advantage of the proposed model is it can account for the couplings between the solid skeleton and the pore fluid. The mass and momentum balance equations are obtained according to the generalized mixture theory. Constitutive relations for the stress, the pore pressure are derived from the total free energy accounting for inter-phase interaction. In order to describe the momentum interaction between the fluid and the solid, a frequency independent Biot-type drag force model is introduced. A temporal variable porosity model with relaxation accounting for additional attenuation is introduced for the first time. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be estimated from directly measurable phenomenological parameters. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for the two P waves and one S wave are calculated. The influences of the porosity relaxation coefficient on the velocities and attenuation coefficients of the three waves of the porous medium are discussed in a numerical example.
Journal Title
Transport in Porous Media
Conference Title
Book Title
Edition
Volume
68
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Applied mathematics
Chemical engineering
Civil engineering
Civil geotechnical engineering