Transformation of carbon-encapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Lu, Hai-Sheng
Zhang, Haimin
Zhang, Xian
Sun, Na
Zhu, Xiaoguang
Zhao, Huijun
Wang, Guozhong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
Abstract

In this work, Co-MOFs microrod structures were firstly fabricated using Co2+ source and trimesic acid (H3BTC) as reaction precursors by a simple solvothermal method, followed by pyrolysis treatment at 900 °C in N2 atmosphere to obtain metallic Co encapsulated into graphitic carbon structure (Co@C) with an average Co particle size of 7.7 ± 0.2 nm excluding large-sized Co particles (>20 nm) and a surface area of 184 g cm−2. Interestingly, ultrafine Co/CoO nanoparticles with an average size of 1.8 ± 0.2 nm anchored on graphitic carbon surface (Co/CoO-C) can be obtained through further acid/alkali rinsing treatment of the as-prepared Co@C using HNO3 and NH3·H2O aqueous solutions respectively, followed by thermal treatment at 900 °C in N2 atmosphere. The formation of Co/CoO-C with a surface area of 247 g cm−2 can be ascribed to the dissolution and reorganization process of carbon-encapsulated metallic Co under acid/alkali rinsing and post-thermal-treatment conditions. As the electrocatalyst, Co/CoO-C exhibits superior bifunctional electrocatalytic activities of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, notably better than ORR and OER activities of Co@C. The characterization results show that Co-Nx and N doping can be found in both Co@C and Co/CoO-C due to triethylamine (TEA) as solvent providing N source during Co-MOFs synthesis, which are catalytic active species toward electrocatalytic oxygen reactions. Furthermore, the highly exposed ultrafine Co/CoO on graphitic carbon surface can provide more catalytic active sites for high-performance ORR and OER, while carbon-encapsulated metallic Co in Co@C is incapable of directly contacting the electrolyte (only influencing shell-layer carbon function work) with limitedly improved electrocatalytic performance. The fabricated Co/CoO-C with superior bifunctional ORR and OER activities as air cathode material was assembled into a rechargeable zinc-air battery, exhibiting high power density and long-term stability. Our work provides an approach to transform low catalytic active electrocatalyst to high catalytic active one for renewable energy applications.

Journal Title

APPLIED SURFACE SCIENCE

Conference Title
Book Title
Edition
Volume

448

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Nanotechnology

Persistent link to this record
Citation
Collections