A genetic programming predictive model for parametric study of factors affecting strength of geopolymers
File version
Accepted Manuscript (AM)
Author(s)
Ong, DEL
Sanjayan, JG
Nazari, A
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
In this paper, the effect of different factors including mixture proportions and curing conditions on the compressive strength of fly ash-based geopolymers was studied. Several parameters were used to construct a predictive model based on genetic programming, which delivers the compressive strength of specimens with reasonable accuracy. A parametric study was carried out to evaluate the effect of each individual parameter on the strength of the geopolymers. The results obtained by the model showed that changing the percentage of aggregates in the standard range, and age of curing are ineffective on the compressive strength of the considered geopolymers. On the other hand, increasing the percentage of fly ash, curing temperature and liquid to ash weight ratio were shown to improve the compressive strength. Another important parameter namely, sodium silicate to alkali hydroxide weight ratio had an optimum value of 2.5 to deliver the highest strength. All of the model predictions were in accordance with the experimental results and those available in the literature for many types of fly ash-based geopolymers. It was concluded that fly ash (sourced from Sarawak, Malaysia) can be suitably used to synthesize geopolymers when the producing factors are precisely determined.
Journal Title
RSC Advances
Conference Title
Book Title
Edition
Volume
5
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Chemical sciences
Civil geotechnical engineering