Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Chan, Kit Yan
Dillon, Tharam S
Singh, Jaipal
Chang, Elizabeth
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size
File type(s)
Location
License
Abstract

This paper proposes a novel neural network (NN) training method that employs the hybrid exponential smoothing method and the Levenberg-Marquardt (LM) algorithm, which aims to improve the generalization capabilities of previously used methods for training NNs for short-term traffic flow forecasting. The approach uses exponential smoothing to preprocess traffic flow data by removing the lumpiness from collected traffic flow data, before employing a variant of the LM algorithm to train the NN weights of an NN model. This approach aids NN training, as the preprocessed traffic flow data are more smooth and continuous than the original unprocessed traffic flow data. The proposed method was evaluated by forecasting short-term traffic flow conditions on the Mitchell freeway in Western Australia. With regard to the generalization capabilities for short-term traffic flow forecasting, the NN models developed using the proposed approach outperform those that are developed based on the alternative tested algorithms, which are particularly designed either for short-term traffic flow forecasting or for enhancing generalization capabilities of NNs.

Journal Title

IEEE Transactions on Intelligent Transportation Systems

Conference Title
Book Title
Edition
Volume

13

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Item Access Status
Note
Access the data
Related item(s)
Subject

Transportation, logistics and supply chains

Artificial intelligence

Computer vision and multimedia computation

Science & Technology

Technology

Engineering, Civil

Engineering, Electrical & Electronic

Transportation Science & Technology

Persistent link to this record
Citation

Chan, KY; Dillon, TS; Singh, J; Chang, E, Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm, IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (2), pp. 644-654

Collections