Interaction between TNFone and tetrapyrroles may account for their anti-genotoxic effects — a novel mechanism for DNA-protection

No Thumbnail Available
File version
Author(s)
Moelzer, Christine
Huber, Hedwig
Steyrer, Andrea
Ziesel, Gesa V
Wallner, Marlies
Goncharova, Iryna
Orlov, Sergey
Urbanova, Marie
Ahlfors, Charles E
Vitek, Libor
Bulmer, Andrew C
Wagner, Karl-Heinz
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
License
Abstract

Bilirubin, the principal and biologically most relevant bile pigment was, until recently, considered a waste product of haem catabolism. However, current data suggest that bile pigments possess biological potential, related to their antioxidant and anti-mutagenic effects. In this context, it is now assumed that bile pigments and their derivatives exert these effects via multiple mechanisms, including discrete anti-oxidative and physico-chemical interactive effects. The major scientific focus so far has concentrated on the compounds' antioxidant action, and mechanistic investigations of possible mutagen-tetrapyrrole interaction are lacking. Therefore we tested structurally related bile pigments/derivatives (bilirubin/-ditaurate/-dimethyl ester, biliverdin/-dimethyl ester, urobilin, stercobilin and protoporphyrin) for anti-genotoxicity in the Salmonella reverse mutation assay (strains TA98, TA102), together with the synthetic mutagen 2,4,7-trinitro-9H-fluoren-9-one (TNFone). To explore possible structural interactions, molecular systems of chlorin e6 porphyrin/bilirubin/biliverdin with TNFone were assayed using circular dichroism. These data consistently revealed, at suprastoichiometric concentrations, that tetrapyrroles interact with TNFone. Addition of TNFone to chlorin e6 porphyrin, bilirubin-albumin and biliverdin-albumin led to a marked change in pigment spectra, providing evidence for tight tetrapyrrole-mutagen interaction. This conclusion was also supported by substantial, TNFone-induced decrease of bilirubin oxidation in the bilirubin-albumin system. This outcome was reflected in a bacterial model, in which most tetrapyrroles and especially protoporphyrin, significantly attenuated TNFone-induced mutagenesis. These data indicate that aromatic, tetrapyrrolic molecules interact with TNFone, providing a novel mechanism to suggest the anti-mutagenic effects of bile pigments in vivo are related to their physico-chemical interaction with genotoxins.

Journal Title

Journal of Porphyrins and Phthalocyanines

Conference Title
Book Title
Edition
Volume

17

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Organic chemistry

Persistent link to this record
Citation
Collections