Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking

No Thumbnail Available
File version
Author(s)
Luo, Chuan
Su, Kaile
Cai, Shaowei
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size
File type(s)
Location

Montpellier, France

License
Abstract

Configuration Checking (CC) was proposed as a new diversification strategy for Stochastic Local Search (SLS) algorithm for solving Minimum Vertex Cover, and has been successfully used for solving the Boolean Satisfiability problems, leading to an SLS algorithm called Swcc. However, the CC strategy for SAT is in the early stage of study, and Swcc cannot compete with the best SLS solvers for SAT in SAT Competition 2011. This paper presents a new strategy called Quantitative Configuration Checking (QCC), which is a quantitative version of the CC strategy for SAT. QCC is based on a new definition of "configuration" and works in a different way from the CC strategy does. Specifically, while previous CC strategies work only in the greedy mode, QCC firstly works in the random mode. We use QCC to improve the Swcc algorithm, resulting in a new SLS algorithm for SAT called Swqcc. Experimental results show that the QCC strategy is more effective than the CC strategy. Furthermore, Swqcc outperforms the best local search SAT solver in SAT Competition 2011 called Sparrow2011 on random 3-SAT instances.

Journal Title
Conference Title

Frontiers in Artificial Intelligence and Applications: Proceedings of the 20th European Conference on Artificial Intelligence ECAI 2012

Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Artificial intelligence not elsewhere classified

Persistent link to this record
Citation