Flexible Autonomous Behaviors of Kinesin and Muscle Myosin Bio-Nanorobots
File version
Author(s)
Ibrahim, M Yousef
Liew, A Wee-Chung
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Kinesin and muscle myosin are considered as physical bio-nanoagents able to sense their cells through their sensors, make decision internally, and perform actions through their actuators. This paper has investigated and compared the flexible (reactive, pro-active, and interactive) autonomous behaviors of kinesin and muscle myosin bio-nanorobots. Using an automata algorithm, the agent-based deterministic finite automaton models of the internal decision making processes of the bio-nanorobots (as their reactive and pro-active capabilities) were converted to their respective computational regular languages (as their interactive capabilities). The resulted computational languages could represent the flexible autonomous behaviors of the bio-nanorobots. The proposed regular languages also reflected the degree of the autonomy and intelligence of internal decision-making processes of the bio-nanorobots in response to their environments. The comparison of flexible autonomous behaviors of kinesin and muscle myosin bio-nanorobots indicated that both bio-nanorobots employed regular languages to interact with their environments through two sensors and one actuator. Moreover, the results showed that kinesin bio-nanorobot used a more complex regular language to interact with its environment compared with muscle myosin bio-nanorobot. Therefore, our results have revealed that the flexible autonomous behavior of kinesin bio-nanorobot was more complicated than the flexible autonomous behavior of muscle myosin bio-nanorobot.
Journal Title
IEEE Transactions on Industrial Electronics
Conference Title
Book Title
Edition
Volume
60
Issue
11
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Information and computing sciences
Modelling and simulation
Artificial intelligence not elsewhere classified
Engineering