Biophysical properties of cells for cancer diagnosis

Loading...
Thumbnail Image
File version
Author(s)
Yadav, Sharda
Barton, Matthew J
Nam-Trung, Nguyen
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
Abstract

Biophysical properties associated with the microenvironment of a tumor has been recognized as an important modulator for cell behaviour and function. Particularly, tissue rigidity is important during tumor carcinogenesis as it affects the tumor’s ability to metastasis. Multiple downstream pathways are affected with a difference in rigidity of the extracellular matrix. The insight into tumor mechanosignalling represents a promising field that may lead to novel approaches for cancer diagnostics. Measurement of rigidity of the extracellular matrix or the tissue is a potential diagnostics approach for cancer detection. Altered extracellular matrix states persist for a long period of time and have lower heterogeneity compared to protein or genetic markers, therefore are more reliable as biomarkers. On the other hand, measurement of different kinase associated proteins or transcripts provide an early insight into potential transition of cells towards metastasis. Co-localization of transcriptional factors like YAP/TAZ provide an insight to determine if the cells are undergoing metastatic changes. This review explains the unique biophysical properties of the tumor microenvironment that present the potential targets for the diagnosis of cancer.

Journal Title

JOURNAL OF BIOMECHANICS

Conference Title
Book Title
Edition
Volume

86

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biomedical engineering

Mechanical engineering

Clinical sciences

Sports science and exercise

Persistent link to this record
Citation