Benthic metabolism and nitrogen dynamics in an urbanised tidal creek: Domination of DNRA over denitrification as a nitrate reduction pathway

No Thumbnail Available
File version
Dunn, Ryan JK
Robertson, David
Teasdale, Peter R
Waltham, Nathan J
Welsh, David T
Griffith University Author(s)
Primary Supervisor
Other Supervisors
File type(s)

Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitrogen would stimulate rates of benthic metabolism and nutrient recycling and preferentially stimulate dissimilatory nitrate reduction to ammonium (DNRA) over denitrification as a pathway for nitrate reduction. Stormwaters greatly influenced water column dissolved inorganic nitrogen (DIN) and suspended solids concentrations with values following a large rainfall event being 5-20-fold greater than during the preceding dry period. Seasonally, maximum and minimum water column total dissolved nitrogen (TDN) and DIN concentrations occurred in the summer (wet) and winter (dry) seasons. Creek sediments were highly heterotrophic throughout the year, and strong sinks for oxygen, and large sources of dissolved organic and inorganic nitrogen during both light and dark incubations, although micro-phytobenthos (MPB) significantly decreased oxygen consumption and N-effluxes during light incubations due to photosynthetic oxygen production and photoassimilation of nutrients. Benthic denitrification rates ranged from 3.5 to 17.7 孯l N m2 h-1, denitrification efficiencies were low (<1-15%) and denitrification was a minor process compared to DNRA, which accounted for ~75% of total nitrate reduction. Overall, due to the low denitrification efficiencies and high rates of N-regeneration, Saltwater Creek sediments would tend to increase rather than reduce dissolved nutrient loads to the downstream Gold Coast Broadwater and Moreton Bay systems. This may be especially true during wet periods when increased inputs of particulate organic nitrogen (PON) and suspended solids could respectively enhance rates of N-regeneration and decrease light availability to MPB, reducing their capacity to ameliorate N-effluxes through photoassimilation.

Journal Title

Estuarine, Coastal and Shelf Science

Conference Title
Book Title


Thesis Type
Degree Program
Publisher link
Patent number
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Access the data
Related item(s)

Ecosystem function

Persistent link to this record