Internet of Things Platform for Energy Management in Multi-Microgrid System to Improve Neutral Current Compensation

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Moghimi, Mojtaba
Liu, Jiannan
Jamborsalamati, Pouya
Rafi, Fida Hasan Md
Rahman, Shihanur
Hossain, Jahangir
Stegen, Sascha
Lu, Junwei
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
Abstract

In this paper, an Internet of Things (IoT) platform is proposed for Multi-Microgrid (MMG) system to improve unbalance compensation functionality employing three-phase four-leg (3P-4L) voltage source inverters (VSIs). The two level communication system connects the MMG system, implemented in Power System Computer Aided Design (PSCAD), to the cloud server. The local communication level utilizes Modbus Transmission Control Protocol/Internet Protocol (TCP/IP) and Message Queuing Telemetry Transport (MQTT) is used as the protocol for global communication level. A communication operation algorithm is developed to manage the communication operation under various communication failure scenarios. To test the communication system, it is implemented on an experimental testbed to investigate its functionality for MMG neutral current compensation (NCC). To compensate the neutral current in MMG, a dynamic NCC algorithm is proposed, which enables the MGs to further improve the NCC by sharing their data using the IoT platform. The performance of the control and communication system using dynamic NCC is compared with the fixed capacity NCC for unbalance compensation under different communication failure conditions. The impact of the communication system performance on the NCC sharing is the focus of this research. The results show that the proposed system provides better neutral current compensation and phase balancing in case of MMG operation by sharing the data effectively even if the communication system is failing partially.

Journal Title

ENERGIES

Conference Title
Book Title
Edition
Volume

11

Issue

11

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Engineering

Built environment and design

Persistent link to this record
Citation
Collections