Drought alters the functional stability of stream invertebrate communities through time

Loading...
Thumbnail Image
File version
Author(s)
Leigh, Catherine
Aspin, Thomas WH
Matthews, Thomas J
Rolls, Robert J
Ledger, Mark E
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Aim: In fresh waters, most biogeographical understanding of how extreme events such as drought modify biodiversity and ecosystem functioning derives from static, spatial comparisons of ecological communities, between intact and disturbed sites or along stress gradients. Impacts of drought on the development of ecological communities over time remain poorly resolved, with information on parallel trends in community structure and function particularly scarce. In theory, drought could progressively eliminate both species and functional traits, rendering communities increasingly taxonomically and functionally nested subsets of their pre-existing counterparts. Alternatively, drought could create new niche opportunities, producing a continuous turnover of species and traits, or simply constrain natural community succession. Location: Dorset, UK. Taxon: Aquatic invertebrates. Methods: We studied temporal changes in community structure and function in artificial streams over 2 years, comparing drought (frequent drying) with control (constant flow) conditions. Temporal beta diversity was partitioned into turnover and nestedness components, calculated using both presence–absence and abundance data, and analysed using time-lag and null modelling approaches. Results: Community development was comparable taxonomically under control and drought conditions, driven primarily by temporal turnover of species. Under control conditions, corresponding trends in functional composition were not apparent, and species turnover was characterized by the progressive replacement of some species by others of equivalent abundance. By contrast, species turnover in disturbed communities was accompanied by both functional turnover and greater loss of individuals, indicating that new colonists were not equivalent, either functionally or numerically, to those they replaced. Furthermore, functional dissimilarities between time points were greatest under drought, and more similar in magnitude to taxonomic dissimilarities, implying that drying reduced the stability and redundancy of functional attributes. Main conclusion: A shift to drier climate could disrupt the natural development of stream community structure, and undermine functional stability, at local and biogeographical scales, with potentially significant consequences for ecosystem services provisioning in fresh waters.

Journal Title

Journal of Biogeography

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2019 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Drought alters the functional stability of stream invertebrate communities through time, Journal of Biogeography, Vol. 00:1–13, 2019, which has been published in final form at 10.1111/jbi.13638. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)

Item Access Status
Note
Access the data
Related item(s)
Subject

Earth sciences

Environmental sciences

Biological sciences

Persistent link to this record
Citation
Collections