Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantar flexion contraction

No Thumbnail Available
File version
Author(s)
Obst, Steven J
Renault, Jean-Baptiste
Newsham-West, Richard
Barrett, Rod S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

Freehand three-dimensional ultrasound (3DUS) was used to investigate longitudinal and biaxial transverse deformation and rotation of the free Achilles tendon in vivo during a voluntary submaximal isometric muscle contraction. Participants (n = 8) were scanned at rest and during a 70% maximal voluntary isometric contraction (MVIC) of the plantarflexors. Ultrasound images were manually digitized to render a 3D reconstruction of the free Achilles tendon for the computation of tendon length, volume, cross-sectional area (CSA), mediolateral diameter (MLD), anteroposterior diameter (APD), and transverse rotation. Tendon longitudinal and transverse (CSA, APD, and MLD) deformation and strain at 70% MVIC were calculated relative to the resting condition. There was a significant main effect of contraction on tendon length and mean CSA, MLD, and APD (P < 0.05), but no effect on tendon volume (P = 0.70). Group mean transverse strains for CSA, MLD, and APD averaged over the length of the tendon were -5.5%, -8.7% and 8.7%, respectively. Peak CSA, MLD, and APD transverse strains all occurred between 40% and 60% of tendon length. Transverse rotation of the free tendon was negligible at rest but increased under load, becoming externally rotated relative to the calcaneal insertion. The relationship between longitudinal and transverse strains of the free Achilles tendon during muscle-induced elongation may be indicative of interfascicle reorganization. The finding that transverse rotation and strain peaked in midportion of the free Achilles tendon may have important implications for tendon injury mechanisms and estimation of tendon stress in vivo.

Journal Title

Journal of Applied Physiology

Conference Title
Book Title
Edition
Volume

116

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biological sciences

Biomedical and clinical sciences

Physiotherapy

Persistent link to this record
Citation
Collections