Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Massoubre, David
Wang, Li
Hold, Leonie
Fernandes, Alanna
Chai, Jessica
Dimitrijev, Sima
Lacopi, Alan
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2015
Size
File type(s)
Location
Abstract

Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers.

Journal Title

Scientific Reports

Conference Title
Book Title
Edition
Volume

5

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2015. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Item Access Status
Note
Access the data
Related item(s)
Subject

Materials engineering not elsewhere classified

Persistent link to this record
Citation
Collections