Single photon production by rephased amplified spontaneous emission
File version
Version of Record (VoR)
Author(s)
Hush, Michael R.
Carvalho, Andre R. R.
Beavan, Sarah E.
Sellars, Matthew J.
Hope, Joseph J.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The production of single photons using rephased amplified spontaneous emission is examined. This process produces single photons on demand with high efficiency by detecting the spontaneous emission from an atomic ensemble, then applying a population-inverting pulse to rephase the ensemble and produce a photon echo of the spontaneous emission events. The theoretical limits on the efficiency of the production are determined for several variants of the scheme. For an ensemble of uniform optical density, generating the initial spontaneous emission and its echo using transitions of different strengths is shown to produce single photons at 70% efficiency, limited by reabsorption. Tailoring the spatial and spectral density of the atomic ensemble is then shown to prevent reabsorption of the rephased photon, resulting in emission efficiency near unity.
Journal Title
New Journal of Physics
Conference Title
Book Title
Edition
Volume
16
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2014. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Item Access Status
Note
Access the data
Related item(s)
Subject
Optical Physics not elsewhere classified
Physical Sciences