Evaluating multiple stressor research in coastal wetlands: A systematic review
File version
Accepted Manuscript (AM)
Author(s)
Connolly, Rod M
Sievers, Michael
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Multiple stressors are ubiquitous in coastal ecosystems as a result of increased human activity and development along coastlines. Accurately assessing multiple stressor effects is essential for predicting stressor impacts and informing management to efficiently and effectively mitigate potentially complex ecological responses. Extracting relevant information on multiple stressor studies conducted specifically within coastal wetlands is not possible from existing reviews, posing challenges in highlighting knowledge gaps and guiding future research. Here, we systematically review manipulative studies that assess multiple anthropogenic stressors within saltmarsh, mangrove, and seagrass ecosystems. In the past decade, there has been a rapid increase in publications, with seagrasses receiving the most attention (76 out of a total of 143 studies). Across all studies, nutrient loading and temperature were tested most often (N = 64 and N = 48, respectively), while the most common stressor combination was temperature with salinity (N = 12). Stressor application and study design varied across ecosystems. Studies are mostly conducted in highly controlled environments, without considering how natural variations in the physicochemical environment of coastal ecosystems may influence stressor intensity and timing under these conditions. This may result in vastly different ecological responses across levels of biological organisation. Shifting focus from univariate analytical approaches to multivariate, particularly path analysis, will help elucidate complex ecological relationships and highlight direct and indirect effects of multiple stressors in coastal ecosystems. There is a solid foundation of multiple stressor research in coastal wetlands. However, we recommend future research enhance ecological realism in experimental design by studying the effects of stressor combinations whilst accounting for spatiotemporal variability that reflects natural conditions of coastal ecosystems.
Journal Title
Marine Environmental Research
Conference Title
Book Title
Edition
Volume
164
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Chemical sciences
Environmental sciences
Biological sciences
Anthropogenic impact
Climate change
Ecosystem disturbance
Eutrophication
Experimental design
Persistent link to this record
Citation
Ostrowski, A; Connolly, RM; Sievers, M, Evaluating multiple stressor research in coastal wetlands: A systematic review, Marine Environmental Research, 2020, 164, pp. 105239