Lectin activity of Pseudomonas aeruginosa vaccine candidates PSE17-1, PSE41-5 and PSE54
File version
Author(s)
Hartley-Tassell, Lauren E
Seib, Kate L
Tiralongo, Joe
Bovin, Nicolai
Savino, Silvana
Masignani, Vega
Jennings, Michael P
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections most commonly in immunocompromised, cystic fibrosis (CF) and burns patients. The pilin and Pseudomonas lectins 1 (PA-IL) and 2 (PA-IIL) are known glycan-binding proteins of P. aeruginosa that are involved in adherence to host cells, particularly CF host airways. Recently, new P. aeruginosa surface proteins were identified by reverse vaccinology and tested in vivo as potential vaccine antigens. Three of these, namely PSE17-1, PSE41-5 and PSE54, were screened for glycan binding using glycan arrays displaying glycan structures representative of those found on human cells. Surface plasmon resonance was used to confirm the lectin activity of these proteins, and determined affinities with several host glycans to be in the nanomolar range. PSE17-1 binds hyaluronic acid and sialyl Lewis A and X. PSE41-5 binds terminal β-linked galactose structures, Lewis and ABO blood group antigens. PSE54 binds to ABO blood group antigens and some terminal β-linked galactose. All three proteins are novel lectins of P. aeruginosa with potential roles in infection of host cells.
Journal Title
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Conference Title
Book Title
Edition
Volume
513
Issue
1
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Medicinal and biomolecular chemistry
Biochemistry and cell biology
Medical biochemistry and metabolomics