Genetic structure and dispersal of Macrobrachium Australiense (Decapoda: Palaemonidae) in western Queensland, Australia

No Thumbnail Available
File version
Author(s)
Cook, BD
Bunn, SE
Hughes, JM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2002
Size
File type(s)
Location
License
Abstract
  1. The freshwater prawn, Macrobrachium australiense (Decapoda: Palaemonidae), is an abundant species throughout the rivers of western Queensland, and it is thought to have effective dispersal capabilities. Given the very low topographical relief of the western Queensland landscape and the vast nature of episodic flooding, it was predicted that widespread dispersal in this species would occur within, and possibly between the four major catchments of the region: the Darling, Bulloo, Cooper and Diamantina. We analysed eight polymorphic allozyme systems and a fragment of the cytochrome c oxidase subunit 1 (COI) mitochondrial DNA (mtDNA) gene to determine the extent of recent and historical patterns of dispersal at nested spatial scales, within and between catchments. 2. Large and significant levels of allozyme and mtDNA differentiation were revealed among all catchments, indicating that dispersal of M. australiense does not occur across catchment boundaries, although this species is reportedly capable of overland movement. In contrast, no significant patterns of genetic differentiation were resolved between major subcatchments of the Darling and Cooper, or between sites within these subcatchments, indicating that populations of M. australiense are panmictic within catchments. 3. The MtDNA data resolved two divergent and reciprocally monophyletic clades, with the first representing the Darling catchment, and the second corresponding to the Bulloo, Cooper and Diamantina catchments. We postulate that extreme variation in historical climatic patterns and palaeohydrologic conditions played an important role in shaping the population structure of M. australiense throughout western Queensland during the Quaternary.
Journal Title

Freshwater Biology

Conference Title
Book Title
Edition
Volume

47

Issue
Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Environmental sciences

Biological sciences

Persistent link to this record
Citation
Collections