Cyclic Behavior of Fine-Grained Soils at Different pH Values

No Thumbnail Available
File version
Author(s)
B. Gratchev, Ivan
Sassa, Kyoji
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2009
Size
File type(s)
Location
License
Abstract

The effects of pH on the liquefaction susceptibility of fine-grained soils were examined by performing undrained cyclic ring-shear tests on artificial mixtures and a natural soil under different pH conditions. Solutions of diluted sulphuric acid H2SO4 and dissolved sodium hydroxide NaOH were used to create acidic and alkaline environments, respectively, while distilled water was used as a reference liquid. Low plasticity kaolin and illite-sand mixtures and a medium plasticity bentonite-sand mixture were selected to investigate the influence of plasticity and clay mineralogy on the pH-dependent response of soil to cyclic loading. The results showed that the effects of pH were more pronounced for the medium plasticity mixture, and depended greatly on the mineralogy of clay fraction. For example, in an acidic medium, the kaolin-sand mixture became slightly more resistant to liquefaction while the illite-sand mixture became more susceptible to liquefaction. The bentonite-sand mixture was observed to be the most sensitive to changes in pH environment. While resistant to liquefaction in distilled water, it rapidly liquefied in acidic and alkaline mediums. Cyclic behavior of a medium plasticity soil, which was collected from an earthquake-induced landslide, was also affected by changes in pH. Although being overall resistant to liquefaction regardless of pH, it decreased its cyclic strength in both acidic and alkaline environments. Based on the available literature and the obtained results, an attempt was made to explain the influence of pH on the undrained cyclic behavior of fine-grained soils.

Journal Title

Journal of Geotechnical & Geoenvironmental Engineering

Conference Title
Book Title
Edition
Volume

135

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Civil Geotechnical Engineering

Civil Engineering

Environmental Engineering

Persistent link to this record
Citation
Collections