Faraday cage screening reveals intrinsic aspects of the van der Waals attraction
File version
Version of Record (VoR)
Author(s)
Reimers, Jeffrey R
Dobson, John F
Gould, Tim
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
General properties of the recently observed screening of the van der Waals (vdW) attraction between a silica substrate and silica tip by insertion of graphene are predicted using basic theory and first-principles calculations. Results are then focused on possible practical applications, as well as an understanding of the nature of vdW attraction, considering recent discoveries showing it competing against covalent and ionic bonding. The traditional view of the vdW attraction as arising from pairwiseadditive London dispersion forces is considered using Grimme’s “D3” method, comparing results to those from Tkatchenko’s more general many-body dispersion (MBD) approach, all interpreted in terms of Dobson’s general dispersion framework. Encompassing the experimental results, MBD screening of the vdW force between two silica bilayers is shown to scale up to medium separations as 1.25 de/d, where d is the bilayer separation and de is its equilibrium value, depicting antiscreening approaching and inside de. Means of unifying this correlation effect with those included in modern density functionals are urgently required.
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Conference Title
Book Title
Edition
Volume
115
Issue
44
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) License (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Other environmental sciences not elsewhere classified