Dynamics of the buoyant plume off the Pearl River Estuary in summer

Loading...
Thumbnail Image
File version
Author(s)
Ou, Suying
Zhang, Hong
Wang, Dong-xiao
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2009
Size

1097563 bytes

File type(s)

application/pdf

Location
License
Abstract

Field measurements of salinity, wind and river discharge and numerical simulations of hydrodynamics from 1978 to 1984 are used to investigate the dynamics of the buoyant plume off the Pearl River Estuary (PRE), China during summer. The studies have shown that there are four major horizontal buoyant plume types in summer: Offshore Bulge Spreading (Type I), West Alongshore Spreading (Type II), East Offshore Spreading (Type III), and Symmetrical Alongshore Spreading (Type IV). River mouth conditions, winds and ambient coastal currents have inter-influences to the transport processes of the buoyant plume. It is found that all of the four types are surface-advected plumes by analysing the vertical characteristic of the plumes, and the monthly variations of the river discharge affect the plume size dominantly. The correlation coefficient between the PRE plume size and the river discharge reaches 0.85 during the high river discharge season. A wind strength index has been introduced to examine the wind effect. It is confirmed that winds play a significant role in forming the plume morphology. The alongshore wind stress and the coastal currents determine the alongshore plume spreading. The impact of the ambient currents such as Dongsha Current and South China Sea (SCS) Warm Current on the plume off the shelf has also assessed. The present study has demonstrated that both the river discharge and wind conditions affect the plume evolution.

Journal Title

Environmental Fluid Mechanics

Conference Title
Book Title
Edition
Volume

9

Issue

5

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2009 Springer-Verlag. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com

Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Physical sciences

Physical oceanography

Engineering

Persistent link to this record
Citation
Collections