Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols

No Thumbnail Available
File version
Author(s)
Gao, Haotian
Wang, Guoli
Chen, Baihan
Zhang, Yanzhe
Liu, Dawei
Lu, Xinpei
He, Guangyuan
Ostrikov, Kostya Ken
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

The COVID-19, viral influenza, tuberculosis, and other widespread infectious diseases evidence that pathogenic biological aerosols (PBAs) are a serious threat to public health. Different from traditional inactivation methods, such as ultraviolet (UV) light which are only safe to use when people are not present, and high-efficiency particulate filters (HEPA) which merely filter microbes without killing them, atmospheric pressure nonequilibrium plasma (APNP) has shown its tremendous potential in drastically diminishing the aerosol transmission route of the infectious agents through the abatement of PBAs. The key issues to develop high performance APNP based air purification system are critically reviewed. Systematic studies on the hazards of different PBAs and the spread of PBAs in indoor environments guide the development of APNP sources to control communicable diseases. The key six sampling and seven detection methods on PBAs are introduced to analyze the PBA abatement efficiency by APNP. Seven common APNP sources which can remove viruses and bacteria aerosols efficiently developed during the past 8 years are introduced. For the APNP sources with small plasma volume, the electric field and diffusion driven charging are the dominant mechanisms to charge PBAs, while the common methods of dusty plasma research can be adapted to atmospheric-pressure conditions to describe the charging effects of APNP sources with large plasma volume. Plentiful long- and short-lifetime reactive oxygen and nitrogen species (RONS) generated by APNP effectively contribute to inactivation of bacterial aerosols. Current studies suggest that viral aerosols are mainly inactivated by short-lifetime RONS including 1O2, ONOO- and ONOOH. The study on the dissolution and reaction of gaseous RONS in microdroplets and accurate measurements on the evolution of charged PBAs are envisaged to be the focus of future research. Opportunities for multidisciplinary collaborative research to advance the development of next-generation high-performance plasma-based air purifiers are highlighted.

Journal Title

Plasma Sources Science and Technology

Conference Title
Book Title
Edition
Volume

30

Issue

5

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Nuclear and plasma physics

Science & Technology

Physical Sciences

Physics, Fluids & Plasmas

Persistent link to this record
Citation

Gao, H; Wang, G; Chen, B; Zhang, Y; Liu, D; Lu, X; He, G; Ostrikov, KK, Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols, Plasma Sources Science and Technology, 2021, 30 (5), pp. 053001

Collections