A visibility and total suspended dust relationship

No Thumbnail Available
File version
Author(s)
Baddock, MC
Strong, CL
Leys, JF
Heidenreich, SK
Tews, EK
McTainsh, GH
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

This study reports findings on observed visibility reductions and associated concentrations of mineral dust from a detailed Australian case study. An understanding of the relationship between visibility and dust concentration is of considerable utility for wind erosion and aeolian dust research because it allows visibility data, which are available from thousands of weather observation stations worldwide, to be converted into dust concentrations. Until now, this application of visibility data for wind erosion/dust studies has been constrained by the scarcity of direct measurements of co-incident dust concentration and visibility measurements. While dust concentrations are available from high volume air samplers, these time-averaged data cannot be directly correlated with instantaneous visibility records from meteorological observations. This study presents a new method for deriving instantaneous values of total suspended dust from time averaged (filter-based) samples, through reference to high resolution PM10 data. The development and testing of the model is presented here as well as a discussion of the derived expression in relation to other visibility-dust concentration predictive curves. The current study is significant because the visibility-dust concentration relationship produced is based on visibility observations made 10e100 km from the dust sources. This distance from source makes the derived relationship appropriate for a greater number of visibility recording stations than widely-used previous relationships based on observations made directly at eroding sources. Testing of the new formula performance against observed total suspended dust concentrations demonstrates that the model predicts dust concentration relatively well (r2 = 0.6) from visibility. When considered alongside previous studies, the new relationship fits into the continuum of visibility-dust concentration outcomes existing for increasing distance-from-source. This highlights the important influence that distance to source has on the visibility-dust concentration relationship.

Journal Title

Atmospheric Environment

Conference Title
Book Title
Edition
Volume

89

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Statistics

Atmospheric sciences

Atmospheric aerosols

Land capability and soil productivity

Environmental engineering

Persistent link to this record
Citation
Collections