Multiscale Contour Steered Region Integral and Its Application for Cultivar Classification
File version
Version of Record (VoR)
Author(s)
Gao, Yongsheng
Xiong, Shengwu
Yuan, Xiaohui
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
In this paper, a multiscale contour steered region integral (MCSRI) method is proposed to classify highly similar shapes with flexible interior connection architectures. A component distance map (CDM) is developed to robustly characterize the flexible interior connection structure, shape of the exterior contour, and their inter-relationship in a shape image. A novel multiscale region transform (MReT) is proposed to perform region integral over different contour-steered strips at all possible scales to effectively integrate patch features, and thus enables a better description of the shape image in a coarse-to-fine manner. It is applied to solve a challenging problem of classifying cultivars from leaf images, which is a new attempt in both biology and computer vision research communities. A soybean cultivar leaf vein database (SoyCultivarVein), which is the first cultivar leaf vein database, is created and presented for performance evaluation. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art methods in similar shape classification and the possibility of cultivar recognition via leaf pattern analysis, which may lead to a new research interest towards fine-level shape analysis on cultivar classification.
Journal Title
IEEE ACCESS
Conference Title
Book Title
Edition
Volume
7
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2019. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Engineering
Information and computing sciences