Calibration of an oscillating nozzle-type rainfall simulator

No Thumbnail Available
File version
Author(s)
Yu, B
Ciesiolka, CAA
Langford, P
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2003
Size
File type(s)
Location
License
Abstract

Nozzle-type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot-wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 runs at different rain intensities and durations, and with different rain gauge layouts, showed that a simple average of measured rain would overestimate the plot-wide rain by about 20 per cent. Using the adjustment factor to convert measured rainfall for individual gauges before averaging improved the estimate of plot-wide rainfall considerably. For the 15 runs considered, overall discrepancy between actual and measured rain is reduced to less than 1 per cent with a standard error of 0繷 mm. This model can be easily tested in the field by comparing rainfall depths of different sized gauges. With the adjustment factor they should all give very similar values. Copyright 頲003 John Wiley & Sons, Ltd.

Journal Title

Earth Surface Processes and Landforms

Conference Title
Book Title
Edition
Volume

28

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Geology

Physical geography and environmental geoscience

Persistent link to this record
Citation
Collections