Characterization of Natural Product Biological Imprints for Computer-aided Drug Design Applications

Loading...
Thumbnail Image
File version
Primary Supervisor

Quinn, Ronald

Other Supervisors

Kellenberger, Ester

Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Can computational binding site similarity tools verify the hypothesis: “Biosynthetic moldings give potent biological activities to natural products”? To answer this question, we designed a tool modeling binding site properties according to solvent exposure. The method showed interesting characteristics but suffers from sensitivity to atomic coordinates. However, existing methods have delivered evidence that the hypothesis was valid for the flavonoid chemical class. In order to extend the study, we designed an automated pipeline capable of searching natural product biosynthetic enzyme structures embedding ligandable catalytic sites. We collected structures of 117 biosynthetic enzymes. Finally, according to structural investigations of biosynthetic enzymes, we characterized diverse substrate-enzyme binding-modes, suggesting that natural product biological imprints usually do not agree with the “key-lock” model.

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (PhD Doctorate)

Degree Program

Doctor of Philosophy (PhD)

School

School of Natural Sciences

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status

Public

Note
Access the data
Related item(s)
Subject

Drug design

Natural products

Biosynthetic moldings

Substrate-enzyme binding-modes

Persistent link to this record
Citation