Wave height forecasting in Dayyer, the Persian Gulf

Loading...
Thumbnail Image
File version
Author(s)
Kamranzad, B
Etemad-Shahidi, A
Kazeminezhad, MH
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2011
Size

157854 bytes

File type(s)

application/pdf

Location
License
Abstract

Forecastingofwaveparametersisnecessaryformanymarineandcoastaloperations.Different forecastingmethodologieshavebeendevelopedusingthewindandwavecharacteristics.Inthispaper, artificialneuralnetwork(ANN)asarobustdatalearningmethodisusedtoforecastthewaveheightforthe next 3,6,12and24hinthePersianGulf.Todeterminetheeffectiveparameters,differentmodelswith various combinationsofinputparameterswereconsidered.Parameterssuchaswindspeed,directionand wave heightoftheprevious3h,werefoundtobethebestinputs.Furthermore,usingthedifference between waveandwinddirectionsshowedbetterperformance.Theresultsalsoindicatedthatifonlythe wind parametersareusedasmodelinputstheaccuracyoftheforecastingincreasesasthetimehorizon increasesupto6h.Thiscanbeduetothelowerinfluenceofpreviouswaveheightsonlargerleadtime forecastingandtheexistinglagbetweenthewindandwavegrowth.Itwasalsofoundthatinshortlead times, theforecastedwaveheightsprimarilydependonthepreviouswaveheights,whileinlargerlead times thereisagreaterdependenceonpreviouswindspeeds. &

Journal Title

Ocean Engineering

Conference Title
Book Title
Edition
Volume

38

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2011 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Oceanography

Civil engineering

Maritime engineering

Maritime engineering not elsewhere classified

Persistent link to this record
Citation
Collections