Additively manufactured biphasic construct loaded with BMP-2 for vertical bone regeneration: A pilot study in rabbit

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Kumar, Sudheesh PT
Hashimi, Saeed
Saifzadeh, Siamak
Ivanovski, Saso
Vaquette, Cedryck
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
Abstract

Vertical bone augmentation of the jaws is required when the height of bone is insufficient at the site of dental implant placement. In this proof of concept study, we investigated the potential of a biphasic polycaprolactone construct combined with a hyaluronic acid based hydrogel loaded with recombinant human bone morphogenetic growth factor-2 (BMP-2) for vertical bone regeneration. The biphasic scaffold consisted of an outer shell manufactured by fused deposition modelling, mimicking native cortical bone and providing mechanical and space maintenance properties essential for bone formation. Within this shell, a 90% porous melt electrospun microfibrous mesh mimicking the architecture of cancellous bone was incorporated in order to facilitate hydrogel loading and subsequent osteogenesis and angiogenesis. The in vitro performances of the biphasic construct demonstrated that BMP-2 was released in a sustained manner over several weeks and that cell viability was maintained in the hydrogel over 21 days. qRT-PCR demonstrated the upregulation of bone markers such as osteopontin, osteocalcin and collagen 1A1 at day 3 and 14 in the constructs loaded with BMP2. In vivo assessment of the biphasic scaffold was performed using a dose of 30 μg of BMP-2 in a rabbit calvarial vertical bone augmentation model. The histology and micro-CT analysis of the elevated space demonstrated that the hydrogel and the presence of BMP-2 enabled bone formation. However, this was limited to the immediate vicinity of the calvarial bone. The amount of newly formed bone was relatively small which was likely due to poor vascularisation of the extraskeletal space. The utilisation of this biomimetic biphasic construct with excellent space maintenance properties can be of interest in dentistry although the in vivo model requires refinement to demonstrated appropriate efficacy.

Journal Title

Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems

Conference Title
Book Title
Edition
Volume

92

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biomedical engineering

Materials engineering

Materials engineering not elsewhere classified

Persistent link to this record
Citation
Collections