A Cascading Failures Perspective Based Mesoscopic Reliability Model of Weighted Public Transit Network considering Congestion Effect and User Equilibrium Evacuation
File version
Version of Record (VoR)
Author(s)
Lu, Jian
Long, Man
Li, Shu-bin
Zhou, Jialin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
To establish the optimal route layout estimation technology based on reliability optimization, a more accurate and realistic reliability model of a weighted public transit network (PTN) is the indispensable basis. This paper establishes a cascading failures (CFs) perspective based mesoscopic reliability model for measuring PTN survivability. First, a modeling method for abstracting weighted PTN and determining its initial passenger flow and bearing capacity is proposed, making the network passenger flow pattern follow the aggregated flow pattern. Second, three basic concepts (time step, congestion effect of a road section, and CFs judging method) for establishing the CFs model are defined to clarify the overall evolution process of CFs. Furthermore, the aggregated passenger flow evacuation that exists in an emergency occurring at a station (i.e., failure load dynamic redistribution (FLDR)) is considered as a conscious dynamic game process through following the user equilibrium rule. As a result, a novel CFs model that considers congestion effect and user equilibrium evacuation is obtained. Finally, based on the collected data of Jinan’s PTN, a case simulation analysis is conducted to verify the adaptability of this model through showing a significantly different dynamics characteristic with the existing FLDR patterns and to provide optimization direction for effectively controlling PTN survivability, that is, guide the transformation among varying FLDR patterns through some technical measures or traffic policies.
Journal Title
Mathematical Problems in Engineering
Conference Title
Book Title
Edition
Volume
2018
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2018 Lin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Mathematical sciences
Applied mathematics not elsewhere classified
Engineering