Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride

No Thumbnail Available
File version
Author(s)
Wu, CZ
Wang, P
Yao, X
Liu, C
Chen, DM
Lu, GQ
Cheng, HM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2006
Size
File type(s)
Location
License
Abstract

Various Mg/carbon and Mg/noncarbon composite systems were prepared by mechanical milling and their hydrogen storage behaviors were investigated. It was found that all the carbon additives exhibited prominent advantage over the noncarbon additives, such as BN nanotubes (BNNTs) or asbestos in improving the hydrogen capacity and dehydriding/hydriding kinetics of Mg. And among the various carbon additives, purified single-walled carbon nanotubes (SWNTs) exhibited the most prominent "catalytic" effect on the hydrogen storage properties of Mg. The hydrogen capacities of all Mg/C composites at 573 K reached more than 6.2 wt.% within 10 min, about 1.5 wt.% higher than that of pure MgH2 at the identical operation conditions. Under certain operation temperatures, H-absorption/desorption rates of Mg/carbon systems were over one order of magnitude higher than that of pure Mg. Furthermore, the starting temperature of the desorption reaction of MgH2 has been lowered to 60 K by adding SWNTs. On the basis of the hydrogen storage behavior and structure/phase investigations, the possible mechanism involved in the property improvement of Mg upon adding carbon materials was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Journal Title

Journal of Alloys and Compounds

Conference Title
Book Title
Edition
Volume

414

Issue

1-Feb

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Condensed matter physics

Solid state chemistry

Physical properties of materials

Materials engineering

Resources engineering and extractive metallurgy

Persistent link to this record
Citation
Collections