Combination of a Novel Photosensitizer DTPP with 650 nm Laser Results in Efficient Apoptosis and Cytoskeleton Collapse in Breast Cancer MCF-7 Cells

No Thumbnail Available
File version
Author(s)
Wang, H
Zhang, HM
Yin, HJ
Zheng, LQ
Wei, MQ
Sha, H
Li, YX
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

Luminal A type breast cancer was suitable for Photodynamic therapy (PDT) as its strong adhesion ability, low malignancy and easily being exposed to laser. To examine the novel photosensitizer agent 5-5-(4-N, N-diacetoxylphenyl-10, 15, 20-tetraphenylporphyrin)(DTPP) mediate PDT in breast cancer cell, Luminal A type breast cancer MCF-7 cells were used in this study, various concentrations of DTPP (0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30 姯mL) and different time intervals (0, 0.5, 1, 2, 4, 6, 8 min) of laser exposure at 650 nm wavelength (power of 20 mW) were tested in PDT. The survival rates of MCF-7 cells were measured using a sensitive cell proliferation assay (MTT) to establish optimal semilethal dose and optimal time exposure, a further study of effects on cytoskeleton and apoptosis were also performed. Cell cycle and apoptosis variation were assayed by flow cytometry. Microtubule, microfilament, and nuclei were observed using laser scanning confocal microscopy. Oncoproteins Bcl-2, beta-tubulin, and beta-catenin were detected by means of electrophoresis. The novel DTPP showed an efficient growth inhibition of MCF-7 during PDT, effective combinations in MCF-7 cells were shown to be 4 姠mL-1 PS irradiated for 8 min at least or 15 姠mL-1 irradiated for 2 min at least. Microtubule, microfilament, and nucleus staining demonstrated that cytoskeletal collapse occurs at 0.5 h after PDT. Bcl-2 and skeleton adhesion proteins beta-catenin were reduced in the level of expression; whereas, skeleton proteins beta-tubulin and actin maintained similar levels of expression 12 h after PDT. These results provided a better understanding of DTPP-PDT in MCF-7 cells.

Journal Title

Cell Biochemistry and Biophysics

Conference Title
Book Title
Edition
Volume

69

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Biochemistry and cell biology

Persistent link to this record
Citation
Collections