Long-Term Fire Regime Modifies Carbon and Nutrient Dynamics in Decomposing Eucalyptus pilularis Leaf Litter

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Butler, Orpheus M
Lewis, Tom
Rashti, Mehran Rezaei
Chen, Chengrong
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
Abstract

The changes in fire regimes expected under climate change are likely to disrupt the biogeochemical cycling of carbon (C) and nutrients in forest ecosystems. Plant litter decomposition is a critical step in the terrestrial biogeochemical cycle, and is an important determinant of fire fuel load and forest C balance. We conducted a 277-day leaf litter decomposition experiment in an Australian eucalypt forest to test whether three contrasting, long-term fire regimes (no burning [NB], 4-yearly burning, and 2-yearly burning) were associated with different C and nutrient dynamics during litter decomposition. Fire regime had strong effects on many litter properties, including overall rates of decomposition and C loss, which were greatest in the NB treatment, suggesting that fire regime can modify the rate at which C is returned from litter to soil or the atmosphere. This has potentially important implications for soil C storage and atmospheric CO2 concentrations under a changing climate. High-frequency fire was associated with litter nutrient depletion and high microbial nutrient demand, but did not affect nutrient loss rates from decomposing litter, suggesting conservative use and retention of nutrients by the litter microbial biomass. These effects differed qualitatively between 2- and 4-yearly burning regimes, and they show how decadal-scale increases in fire frequency might contribute to soil nutrient depletion by disrupting decomposition. Many effects of fire regime on litter properties throughout decomposition were sensitive to litter bag re-collection date, suggesting that seasonal factors moderate the effects of fire regime, and that the role of fire regime-altered litter chemistry in shaping decomposition may be secondary to that of fire regime-altered environmental variables. Together, our findings highlight the potential consequences of long-term increases in prescribed fire frequency for litter decomposition and the storage and cycling of C and nutrients in eucalypt forests, and reveal the specific importance of average burn frequency in this context.

Journal Title

Frontiers in Forests and Global Change

Conference Title
Book Title
Edition
Volume

3

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2020 Butler, Lewis, Rezaei Rashti and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Item Access Status
Note
Access the data
Related item(s)
Subject

Chemical sciences

Forestry sciences

Science & Technology

Life Sciences & Biomedicine

Ecology

Forestry

Environmental Sciences & Ecology

Persistent link to this record
Citation

Butler, OM; Lewis, T; Rashti, MR; Chen, C, Long-Term Fire Regime Modifies Carbon and Nutrient Dynamics in Decomposing Eucalyptus pilularis Leaf Litter, Frontiers in Forests and Global Change, 2020, 3, pp. 22

Collections