Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study
File version
Author(s)
van Staden, Rudi
Loo, Yew-Chaye
Johnson, Newell
Ivanovski, Saso
Meredith, Neil
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
1143637 bytes
File type(s)
application/pdf
Location
License
Abstract
Purpose: The complicated relationships between mandibular bone components and dental implants have attracted the attention of structural mechanics researchers as well as dental practitioners. Using the finite element method, the present study evaluated various bone and implant parameters for their influence on the distribution of von Mises stresses within the mandible. Materials and Methods: Various parameters were considered, including Young's modulus of cancellous bone, which varies from 1 to 4 GPa, and that of cortical bone, which is between 7 and 20 GPa. Implant length (7, 9, 11, 13, and 15 mm), implant diameter (3.5, 4.0, 4.5, and 5.5 mm), and cortical bone thickness (0.3 to 2.1 mm) were also considered as parameters. Assumptions made in the analysis were: modeling of the complex material and geometric properties of the bone and implant using two-dimensional triangular and quadrilateral plane strain elements, 50% osseointegration between bone and implant, and linear relationships between the stress value and Young's modulus of both cancellous and cortical bone at any specific point. Results: An increase in Young's modulus and a decrease in the cortical bone thickness resulted in elevated stresses within both cancellous and cortical bone. Increases in the implant length led to greater surface contact between the bone and implant, thereby reducing the magnitude of stress. Conclusions: The applied masticatory force was demonstrated to be the most influential, in terms of differences between minimum and maximum stress values, versus all other parameters. Therefore loading should be considered of vital importance when planning implant placement.
Journal Title
The International Journal of Oral & Maxillofacial Implants
Conference Title
Book Title
Edition
Volume
24
Issue
5
Thesis Type
Degree Program
School
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2009 Qintessence Publishing Co. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Biomedical engineering
Dentistry
Dentistry not elsewhere classified