A Weibull Distribution Based Technique for Downscaling of Climatic Wind Field
File version
Accepted Manuscript (AM)
Author(s)
Kavianpour, MR
Kamranzad, B
Etemad-Shahidi, A
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
This study proposes a simple approach based on Weibull distribution parameters for downscaling climatic wind speed and direction. In this method, the Weibull parameters of a Global Climate Model (GCM) are modified using Weibull parameters of the reference data (ECMWF). To correct the wind direction, the downscaling technique was applied to the eastward and northward wind components. All the wind components were simply transformed to positive values in order to fit a Weibull distribution. The unbiased wind speed was calculated by integrating the corrected wind components. Moreover, other models were considered to directly modify the wind speed (not wind components) using the same methodology. Performance and ability of the proposed approach were evaluated against the existing statistical downscaling techniques such as Multiplicative Shift Method (MSM), quantile mapping and support vector regression. In the models, the 6-h GCM wind component/speed was the sole predictor and the ECMWF reanalysis wind data was considered as the predictand. It is demonstrated that direct application of the proposed method on the wind speed slightly gives better estimation of the predictand rather than its application on wind components. The results indicate the Weibull distribution based method outperforms the other techniques for wind direction and magnitude. The method provides sound predictions for a wide range of wind speed from low to high values. By using the proposed downscaling technique for wind components, wind direction can be adjusted accordingly.
Journal Title
Asia-Pacific Journal of Atmospheric Sciences
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2019 Springer US. This is an electronic version of an article published in American Journal of Community Psychology, AOV. American Journal of Community Psychology is available online at: http://link.springer.com/ with the open URL of your article.
Item Access Status
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Access the data
Related item(s)
Subject
Atmospheric sciences