Thai Automatic signature verification System Employing Textural Features
File version
Author(s)
Suwanwiwat, Hemmaphan
Ferrer, Miguel
Pal, Umapada
Blumenstein, Michael
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
This study focuses on a comprehensive study of Automatic Signature Verification (ASV) for off-line Thai signatures; an investigation was carried out to characterise the challenges in Thai ASV and to baseline the performance of Thai ASV employing baseline features, being Local Binary Pattern, Local Directional Pattern, Local Binary and Directional Patterns combined (LBDP), and the baseline shape/feature-based hidden Markov model. As there was no publicly available Thai signature database found in the literature, the authors have developed and proposed a database considering real-world signatures from Thailand. The authors have also identified their latent challenges and characterised Thai signature-based ASV. The database consists of 5,400 signatures from 100 signers. Thai signatures could be bi-script in nature, considering the fact that a single signature can contain only Thai or Roman characters or contain both Roman and Thai, which poses an interesting challenge for script-independent SV. Therefore, along with the baseline experiments, the investigation on the influence and nature of bi-script ASV was also conducted. From the equal error rates and Bhattacharyya distance, the score achieved in the experiments indicate that the Thai SV scenario is a script-independent problem. The open research area on this subject of research has also been addressed.
Journal Title
IET Biometrics
Conference Title
Book Title
Edition
Volume
7
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence
Other engineering
Information and computing sciences
Feature extraction
Handwriting recognition
Hidden Markov models
Image texture