Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure

No Thumbnail Available
File version
Author(s)
Kavehei, Emad
Jenkins, GA
Adame, MF
Lemckert, C
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

Green stormwater infrastructure is a common feature of urban cities which is mostly designed for hydrological and water quality purposes. The last decade has seen a rise in research on the environmental impact assessment of vegetated water sensitive urban design (WSUD) technologies. However, the added ecosystem benefits of these systems, such as carbon sequestration, have received less attention. In this study, the life cycle net carbon footprint of various vegetated WSUD technologies namely green roofs, rain gardens, bioretention basins, vegetated swales and stormwater ponds, have been reviewed and analysed including their carbon sequestration potential. The carbon footprint of each vegetated WSUD technology was evaluated through the four phases of the life cycle assessment (LCA): material production, construction, operation and maintenance and end-of-life phases. The results of this study show that the initial embodied carbon associated with production, transportation and construction phases is the major contributor to the carbon footprint for most of the vegetated WSUD technologies. Rain gardens are shown to provide the highest carbon sequestration potential which offsets its carbon footprint. Carbon sequestration of bioretention basins, green roofs, vegetated swales and stormwater ponds can mitigate approximately 70%, 68%, 45% and 8% of their carbon footprint respectively. This study demonstrates the significant role of carbon sequestration in mitigating the carbon footprint from the assigned life time of the vegetated WSUD technologies. The results presented in this study will allow designers and policymakers to include the carbon implication in their WSUD strategies.

Journal Title

Renewable and Sustainable Energy Reviews

Conference Title
Book Title
Edition
Volume

94

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Engineering

Environmentally sustainable engineering

Global and planetary environmental engineering

Persistent link to this record
Citation
Collections