LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action

No Thumbnail Available
File version
Author(s)
P. Sester, David
Trieu, Angela
Brion, Kristian
Schroder, Kate
Ravasi, Timothy
A. Robinson, Jodie
McDonald, Rebecca C.
Ripolla, Vera
Suzuki, Harukazu
Hayashizaki, Yoshihide
J. Stacey, Katryn
A. Hume, David
Sweet, Matthew J.
A. Wells, Christine
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2005
Size
File type(s)
Location
License
Abstract

We previously reported that bacterial products such as LPS and CpG DNA down-modulated cell surface levels of the Colony Stimulating Factor (CSF)-1 receptor (CSF-1R) on primary murine macrophages in an all-or-nothing manner. Here we show that the ability of bacterial products to down-modulate the CSF-1R rendered bone marrow-derived macrophages (BMM) unresponsive to CSF-1 as assessed by Akt and ERK1/2 phosphorylation. Using toll-like receptor (tlr)9 as a model CSF-1-repressed gene, we show that LPS induced tlr9 expression in BMM only when CSF-1 was present, suggesting that LPS relieves CSF-1-mediated inhibition to induce gene expression. Using cDNA microarrays, we identified a cluster of similarly CSF-1 repressed genes in BMM. By real time PCR we confirmed that the expression of a selection of these genes, including integral membrane protein 2B (itm2b), receptor activity-modifying protein 2 (ramp2) and macrophage-specific gene 1 (mpg-1), were repressed by CSF-1 and were induced by LPS only in the presence of CSF-1. This pattern of gene regulation was also apparent in thioglycollate-elicited peritoneal macrophages (TEPM). LPS also counteracted CSF-1 action to induce mRNA expression of a number of transcription factors including interferon consensus sequence binding protein 1 (Icsbp1), suggesting that this mechanism leads to transcriptional reprogramming in macrophages. Since the majority of in vitro studies on macrophage biology do not include CSF-1, these genes represent a set of previously uncharacterised LPS-inducible genes. This study identifies a new mechanism of macrophage activation, in which LPS (and other toll-like receptor agonists) regulate gene expression by switching off the CSF-1R signal. This finding also provides a biological relevance to the well-documented ability of macrophage activators to down-modulate surface expression of the CSF-1R.

Journal Title

Immunobiology

Conference Title
Book Title
Edition
Volume

210

Issue

2-Apr

Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Biological Sciences

Agricultural and Veterinary Sciences

Medical and Health Sciences

Persistent link to this record
Citation
Collections