Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men

Loading...
Thumbnail Image
File version
Author(s)
Alkahtani, Shaea A.
King, Neil A.
Hills, Andrew
Byrne, Nuala M.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size

630507 bytes

File type(s)

application/pdf

Location
Abstract

Purpose: The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE).

Methods: Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m2) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test.

Results: There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05).

Conclusion: Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.

Journal Title

SpringerPlus

Conference Title
Book Title
Edition
Volume

2

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2013 Alkahtani et al; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Exercise physiology

Persistent link to this record
Citation
Collections