Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation
File version
Author(s)
Wu, X
Ho, W
Lv, K
Li, Q
Li, M
Lee, SC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
As a ternary complex oxide with good physic-chemical stability, Zn2SnO4 is a promising candidate in the photocatalytic application. However, the photocatalytic activity of Zn2SnO4 needs further to improve due to its wide bandgap (about 3.4 eV) and intrinsic high recombination rate of photo-generated charge carriers. In this paper, the positive influence of graphene on the structure and visible photocatalytic activity of Zn2SnO4 in oxidation of NO and acetone was systematically investigated based on the fact that graphene has the property of high electronic conductivity for transporting and storing electrons. It was found that the presence of graphene not only induces the formation of SnO2, but also introduces Sn vacancy, which can trigger the visible light photocatalytic activity. The photocatalyst loading with 3.0 wt% of graphene shows the highest photocatalytic reactivity towards oxidation of NO and acetone under visible light illumination. Graphene can efficiently transfer the photo-produced electrons from the conduction band of Zn2SnO4, retarding the recombination of carriers and therefore enhancing the visible photo-reactivity. A visible-light-responsive photocatalytic reaction model based on the three-component-photocatalyst SnO2-Zn2SnO4/graphene was put forward.
Journal Title
Chemical Engineering Journal
Conference Title
Book Title
Edition
Volume
336
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Chemical engineering
Civil engineering
Environmental engineering