Identification of a selective inhibitor of IDH2/R140Q enzyme that induces cellular differentiation in leukemia cells
File version
Version of Record (VoR)
Author(s)
Yang, Jie
Wei, Qingyun
Weng, Ling
Wu, Fei
Shi, Yun
Cheng, Xiaolan
Cai, Xueting
Hu, Chunping
Cao, Peng
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Background: IDH2/R140Q mutation is frequently detected in acute myeloid leukemia (AML). It contributes to leukemia via accumulation of oncometabolite D-2-HG. Therefore, mutant IDH2 is a promising target for AML. Discovery of IDH2 mutant inhibitors is in urgent need for AML therapy. Methods: Structure-based in silico screening and enzymatic assays were used to identify IDH2/R140Q inhibitors. Molecular docking, mutant structure building and molecular dynamics simulations were applied to investigate the inhibitory mechanism and selectivity of CP-17 on IDH2/R140Q. TF-1 cells overexpressed IDH2/R140Q mutant were used to study the effects of CP-17 on cellular proliferation and differentiation, the wild-type TF-1 cells were used as control. The intracellular D-2-HG production was measured by LC-MS. The histone methylation was evaluated with specific antibodies by western blot. Results: CP-17, a heterocyclic urea amide compound, was identified as a potent inhibitor of IDH2/R140Q mutant by in silico screening and enzymatic assay. It exhibits excellent inhibitory activity with IC50 of 40.75 nM against IDH2/R140Q. More importantly, it shows poor activity against the wild-type IDH1/2, resulting in a high selectivity of over 55 folds, a dramatic improvement over previously developed inhibitors such as AGI-6780 and Enasidenib. Molecular simulations suggested that CP-17 binds to IDH2/R140Q at the allosteric site within the dimer interface through extensive polar and hydrophobic interactions, locking the enzyme active sites in open conformations with abolished activity to produce D-2-HG. Cellular assay results demonstrated that CP-17 inhibits intracellular D-2-HG production and suppresses the proliferation of TF-1 erythroleukemia cells carrying IDH2/R140Q mutant. Further, CP-17 also restores the EPO-induced differentiation that is blocked by the mutation and decreases hypermethylation of histone in the TF-1(IDH2/R140Q) cells. Conclusions: These results indicate that CP-17 can serve as a lead compound for the development of inhibitory drugs against AML with IDH2/R140Q mutant.
Journal Title
Cell Communication and Signaling
Conference Title
Book Title
Edition
Volume
18
Issue
1
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s). 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Item Access Status
Note
Access the data
Related item(s)
Subject
Biochemistry and cell biology
Genetics
Science & Technology
Life Sciences & Biomedicine
Cell Biology
IDH2
R140Q
Persistent link to this record
Citation
Chen, J; Yang, J; Wei, Q; Weng, L; Wu, F; Shi, Y; Cheng, X; Cai, X; Hu, C; Cao, P, Identification of a selective inhibitor of IDH2/R140Q enzyme that induces cellular differentiation in leukemia cells, Cell Communication and Signaling, 2020, 18 (1), pp. 55