Gene Expression data clustering and visualization based on a binary hierarchical clustering framework

No Thumbnail Available
File version
Author(s)
Szeto, LK
Liew, AWC
Yan, H
Tang, SS
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2003
Size
File type(s)
Location
License
Abstract

Gene expression data analysis has recently emerged as an active area of research. An important tool for unsupervised analysis of gene expression data is cluster analysis. Although many clustering algorithms have been proposed for such task, problems such as estimating the right number of clusters and adapting to different cluster characteristics are still not satisfactorily addressed. In this paper, we propose a binary hierarchical clustering (BHC) algorithm for the clustering of gene expression data. The BHC algorithm involves two major steps: (i) the fuzzy C-means algorithm and the average linkage hierarchical clustering algorithm are used to partition the data into two classes, and (ii) the Fisher linear discriminant analysis is applied to the two classes to refine and assess whether the partition is acceptable. The BHC algorithm recursively partitions the subclasses until all clusters cannot be partition any further. It does not require the number of clusters to be supplied in advance nor does it place any assumption about the size of each cluster or the class distribution. The BHC algorithm naturally leads to a tree structure representation, where the clustering results can be visualized easily.

Journal Title

Journal of Visual Languages and Computing

Conference Title
Book Title
Edition
Volume

14

Issue

4

Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Cognitive and computational psychology

Persistent link to this record
Citation
Collections