Laser Cooling Trapping of Metastable Neon and Applications to Collision Measurements

Loading...
Thumbnail Image
File version
Primary Supervisor

Sang, Robert

Other Supervisors

Pryde, Geoff

Lohmann, Birgit

Editor(s)
Date
2010
Size
File type(s)
Location
License
Abstract

This thesis presents a new technique for measuring total absolute collision cross sections. Using this technique, the total absolute collision cross sections were determined for neon in the (3s)3P2 metastable state with ground state thermal atoms and molecules. A magneto-optical trap (MOT) is used in this technique which infers the cross sections via the measurement of population dynamics within the MOT to determine the collision cross section.

This technique is capable of providing benchmark measurements of total absolute collision cross sections. The measurements are unique for the low average collision energy which ranges between 11meV and 27meV for the dierent collision species and relatively low uncertainty of approximately 9.4%. The measurements were for neon in the (3s)3P2 metastable state with He, Ne, Ar, H2, O2, N2 and CO2. The measured cross sections were respectively 160±20Å2, 500±50Å2, 840±80Å2, 230±20Å2, 1000±100Å2, 1300.0±100Å2, 830±80Å2. The measurements made using this technique have small uncertainties, of the order of 10% of the measured cross section.

As Ne* does not have the energy to ionize He, the Ne*-He collision was entirely elastic and the validity of this technique was conrmed by comparing the experimental result for this collision with an approximation for the elastic collision cross section based on van der Waals forces. The calculation based on this approximation yielded an elastic cross-section of 168.88Å2 for the Ne*-He system. This theoretical value compared favourably and within the uncertainties of the experimental measurement for the Ne*-He collision of 160±20Å2.

To be able to perform these investigations a rebuild and partial redesign of the Griffith University metastable neon trapping apparatus was necessary and was included in this work.

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (PhD Doctorate)

Degree Program

Doctor of Philosophy (PhD)

School

School of Biomolecular and Physical Sciences

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status

Public

Note
Access the data
Related item(s)
Subject

total absolute collision cross sections

Magneto-optical trap

metastable

neon

Persistent link to this record
Citation