Experimental Validation and Computational Predictions Join Forces to Map Catalytic C–H Activation in Ferrocene Metalated Porous Organic Polymers

No Thumbnail Available
File version
Author(s)
Boro, Bishal
Paul, Ratul
Tan, Hui Ling
Trinh, Quang Thang
Rabeah, Jabor
Chang, Chia-Che
Pao, Chih-Wen
Liu, Wen
Nguyen, Nam-Trung
Mai, Binh Khanh
Mondal, John
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2023
Size
File type(s)
Location
License
Abstract

In recent times, a self-complementary balanced characteristic feature with the combination of both covalent bonds (structural stability) and open metal sites (single-site catalysis) introduced an advanced emerging functional nanoarchitecture termed metalated porous organic polymers (M-POPs). However, the development of M-POPs in view of the current interest in catalysis has been realized still in its infancy and remains a challenge for the years to come. In this work, we built benzothiazole-linked Fe-metalated porous organic polymer (Fc-Bz-POP) using ferrocene dicarboxaldehyde (FDC), 1,3,5-tris(4-aminophenyl) benzene (APB), and elemental sulfur (S8) via a template-free, multicomponent, cost-effective one-pot synthetic approach. This Fc-Bz-POP is endowed with unique features including an extended network unit, isolated active sites, and catalytic pocket with a possible local structure, in which convergent binding sites are positioned in such a way that substrate molecules can be held in close proximity. Prospective catalytic application of this Fc-Bz-POP has been explored in executing catalytic allylic “C-H” bond functionalization of cyclohexene (CHX) in water at room temperature. Catalytic screening results identified that a superior performance with a CHX conversion of 95% and a 2-cyclohexene-1-ol selectivity (COL) of 80.8% at 4 h and 25 °C temperature has been achieved over Fc-Bz-POP, thereby addressing previous shortcomings of the other conventional catalytic systems. Comprehensive characterization understanding with the aid of synchrotron-based extended X-ray absorption fine structure (EXAFS) analysis manifested that the Fe atom with an oxidation state of +2 in our Fc-Bz-POP catalytic system encompasses a sandwich structural environment with the two symmetrical eclipsed cyclopentadienyl (Cp) rings, featuring nearest-neighbor (NN) Fe-C (≈2.05 Å) intramolecular bonds, as validated by the Fe L3-edge EXAFS fitting result. Furthermore, in situ attenuated total reflection-infrared spectroscopy (ATR-IR) analysis data for liquid-phase oxidation of cyclohexene allow for the formulation of a molecular-level reaction mechanistic pathway with the involvement of specific reaction intermediates, which is initiated by the radical functionalization of the allyl hydrogen. A deep insight investigation from density functional theory (DFT) calculations unambiguously revealed that the dominant pathway from cyclohexene to 2-cyclohexene-1-ol is initiated by an allyl-H functionalization step accompanied by the formation of 2-cyclohexene-1-hydroperoxide species as the key reaction intermediate. Electronic properties obtained from DFT simulations via the charge density difference plot, Bader charge, and density of state (DOS) demonstrate the importance of the organic polymer frame structure in altering the electronic properties of the Fe site in Fc-Bz-POP, resulting in its high activity. Our contribution has great implications for the precise design of metalated porous organic polymer-based robust catalysts, which will open a new avenue to get a clear image of surface catalysis.

Journal Title

ACS Applied Materials & Interfaces

Conference Title
Book Title
Edition
Volume

15

Issue

17

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Chemical sciences

Engineering

Physical sciences

Science & Technology

Technology

Nanoscience & Nanotechnology

Materials Science, Multidisciplinary

Science & Technology - Other Topics

Persistent link to this record
Citation

Boro, B; Paul, R; Tan, HL; Trinh, QT; Rabeah, J; Chang, C-C; Pao, C-W; Liu, W; Nguyen, N-T; Mai, BK; Mondal, J, Experimental Validation and Computational Predictions Join Forces to Map Catalytic C–H Activation in Ferrocene Metalated Porous Organic Polymers, ACS Applied Materials & Interfaces, 2023, 15 (17), pp. 21027-21039

Collections