Consumer-resource coupling in wet-dry tropical rivers
Loading...
File version
Author(s)
Jardine, Timothy D
Pettit, Neil E
Warfe, Danielle M
Pusey, Bradley J
Ward, Doug P
Douglas, Michael M
Davies, Peter M
Bunn, Stuart E
Pettit, Neil E
Warfe, Danielle M
Pusey, Bradley J
Ward, Doug P
Douglas, Michael M
Davies, Peter M
Bunn, Stuart E
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size
1043355 bytes
File type(s)
application/pdf
Location
License
Abstract
- Despite implications for top-down and bottom-up control and the stability of food webs, understanding the links between consumers and their diets remains difficult, particularly in remote tropical locations where food resources are usually abundant and variable and seasonal hydrology produces alternating patterns of connectivity and isolation. 2. We used a large scale survey of freshwater biota from 67 sites in three catchments (Daly River, Northern Territory; Fitzroy River, Western Australia; and the Mitchell River, Queensland) in Australia's wet-dry tropics and analysed stable isotopes of carbon (d13C) to search for broad patterns in resource use by consumers in conjunction with known and measured indices of connectivity, the duration of floodplain inundation, and dietary choices (i.e. stomach contents of fish). 3. Regression analysis of biofilm d13C against consumer d13C, as an indicator of reliance on local food sources (periphyton and detritus), varied depending on taxa and catchment. 4. The carbon isotope ratios of benthic invertebrates were tightly coupled to those of biofilm in all three catchments, suggesting assimilation of local resources by these largely nonmobile taxa. 5. Stable C isotope ratios of fish, however, were less well-linked to those of biofilm and varied by catchment according to hydrological connectivity; the perennially flowing Daly River with a long duration of floodplain inundation showed the least degree of coupling, the seasonally flowing Fitzroy River with an extremely short flood period showed the strongest coupling, and the Mitchell River was intermediate in connectivity, flood duration and consumer-resource coupling. 6. These findings highlight the high mobility of the fish community in these rivers, and how hydrological connectivity between habitats drives patterns of consumer-resource coupling.
Journal Title
Journal of Animal Ecology
Conference Title
Book Title
Edition
Volume
81
Issue
2
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Author Posting. Copyright The Authors 2012. The full text of this article is published in Journal of Animal Ecology, Vol. 81(2), pp. 310-322. It is available online at http://dx.doi.org/10.1111/j.1365-2656.2011.01925.x.
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences
Biological sciences
Freshwater ecology
Agricultural, veterinary and food sciences
Ecology
Zoology