Full reconstruction of a 14-qubit state within four hours

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Hou, Zhibo
Zhong, Han-Sen
Tian, Ye
Dong, Daoyi
Qi, Bo
Li, Li
Wang, Yuanlong
Nori, Franco
Xiang, Guo-Yong
Li, Chuan-Feng
Guo, Guang-Can
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
Abstract

Full quantum state tomography (FQST) plays a unique role in the estimation of the state of a quantum system without a priori knowledge or assumptions. Unfortunately, since FQST requires informationally (over)complete measurements, both the number of measurement bases and the computational complexity of data processing suffer an exponential growth with the size of the quantum system. A 14-qubit entangled state has already been experimentally prepared in an ion trap, and the data processing capability for FQST of a 14-qubit state seems to be far away from practical applications. In this paper, the computational capability of FQST is pushed forward to reconstruct a 14-qubit state with a run time of only 3.35 hours using the linear regression estimation (LRE) algorithm, even when informationally overcomplete Pauli measurements are employed. The computational complexity of the LRE algorithm is first reduced from∼1019 to∼1015 for a 14-qubit state, by dropping all the zero elements, and its computational efficiency is further sped up by fully exploiting the parallelism of the LRE algorithm with parallel Graphic Processing Unit (GPU) programming. Our result demonstrates the effectiveness of using parallel computation to speed up the postprocessing for FQST, and can play an important role in quantum information technologies with large quantum systems.

Journal Title

New Journal of Physics

Conference Title
Book Title
Edition
Volume

18

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (https://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Other physical sciences not elsewhere classified

Persistent link to this record
Citation
Collections