uAuction: Analysis, Design, and Implementation of a Secure Online Auction System

No Thumbnail Available
File version
Author(s)
Majadi, Nazia
Trevathan, Jarrod
Bergmann, Neil
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

Wang, KIK

Jin, Q

Zhang, Q

Bhuiyan, MZA

Hsu, CH

Date
2016
Size
File type(s)
Location

Auckland, NEW ZEALAND

License
Abstract

Online auctions are now an immensely popular component of the electronic marketplace. However, there are many fraudulent buying/selling behaviours that can occur during an auction (e.g., shill bidding, bid shielding, etc.). While researchers are proposing methods for combating such fraud, it is extremely difficult to test how effective these countermeasures are. This is primarily due to it being unethical to engage in fraudulent behaviour just for the purpose of testing countermeasures. Furthermore, there is limited commercial auction data available due to the sensitivities of an online auctioneer being willing to admit that fraud has, or is occurring. In order to test fraud countermeasures in a controlled environment, we have created our own online auction server for conducting auction-related research. This paper presents our experiences with designing and implementing our own online auction system which we call uAuction. At present, there is limited useful literature on auction system design. We present an analysis and design of the auction system by employing Unified Modeling Language (UML) to show the architectural model, subsystems, use cases, activity workflows, class diagram, user interfaces, and system sequence diagrams. Our auction model is grounded in object-oriented techniques and is open source so that other researchers can expand upon our approach.

Journal Title
Conference Title

2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC

Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Software engineering not elsewhere classified

Persistent link to this record
Citation