Conformation-activity relationships of opiate analgesics
File version
Author(s)
Andrews, P
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Extensive conformational calculations were performed on the potent opiate analgesics etorphine, PET, R30490 and etonitazene to determine all of their many low-energy conformations. The results were used to characterize four possible models for binding of a simple pharmacophore, comprising two phenyl rings plus a protonated nitrogen, to opiate analgesic receptors. These four models may define the necessary three-dimensional features leading to particular opiate actions. The model favoured for μ receptor activity can accommodate a protonated nitrogen, an aromatic ring (which may be substituted with an electronegative group) and a second lipophilic group. These structural features must be presented in a precise three-dimensional arrangement. It appears likely that a hydrophilic substituent in a certain region of the analgesic pharmacophore may also interact with the receptor as a secondary binding group.
Journal Title
Journal of Computer-Aided Molecular Design
Conference Title
Book Title
Edition
Volume
1
Issue
1
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Medicinal and biomolecular chemistry
Theoretical and computational chemistry
Biochemistry and cell biology not elsewhere classified