Augmented Commonsense Knowledge for Remote Object Grounding
File version
Author(s)
Hong, Y
Qi, Y
Wu, Q
Pan, S
Shi, JQ
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Vancouver, Canada
License
Abstract
The vision-and-language navigation (VLN) task necessitates an agent to perceive the surroundings, follow natural language instructions, and act in photo-realistic unseen environments. Most of the existing methods employ the entire image or object features to represent navigable viewpoints. However, these representations are insufficient for proper action prediction, especially for the REVERIE task, which uses concise high-level instructions, such as "Bring me the blue cushion in the master bedroom". To address enhancing representation, we propose an augmented commonsense knowledge model (ACK) to leverage commonsense information as a spatio-temporal knowledge graph for improving agent navigation. Specifically, the proposed approach involves constructing a knowledge base by retrieving commonsense information from ConceptNet, followed by a refinement module to remove noisy and irrelevant knowledge. We further present ACK which consists of knowledge graph-aware cross-modal and concept aggregation modules to enhance visual representation and visual-textual data alignment by integrating visible objects, commonsense knowledge, and concept history, which includes object and knowledge temporal information. Moreover, we add a new pipeline for the commonsensebased decision-making process which leads to more accurate local action prediction. Experimental results demonstrate our proposed model noticeably outperforms the baseline and archives the state-of-the-art on the REVERIE benchmark.
Journal Title
Conference Title
Proceedings of the AAAI Conference on Artificial Intelligence
Book Title
Edition
Volume
38
Issue
5
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation
Mohammadi, B; Hong, Y; Qi, Y; Wu, Q; Pan, S; Shi, JQ, Augmented Commonsense Knowledge for Remote Object Grounding, Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (5), pp. 4269-4277