Arrow of Time for Continuous Quantum Measurement
File version
Accepted Manuscript (AM)
Author(s)
Chantasri, Areeya
Jordan, Andrew N.
Korotkov, Alexander N.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
We investigate the statistical arrow of time for a quantum system being monitored by a sequence of measurements. For a continuous qubit measurement example, we demonstrate that time-reversed evolution is always physically possible, provided that the measurement record is also negated. Despite this restoration of dynamical reversibility, a statistical arrow of time emerges, and may be quantified by the log-likelihood difference between forward and backward propagation hypotheses. We then show that such reversibility is a universal feature of nonprojective measurements, with forward or backward Janus measurement sequences that are time-reversed inverses of each other.
Journal Title
Physical Review Letters
Conference Title
Book Title
Edition
Volume
119
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2017 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Mathematical sciences
Physical sciences
Quantum physics not elsewhere classified
Engineering